
Python	basics	exercise	answers
Print	your	name

print("Albert")

Print	song	lyrics

print("line	1")
print("line	1")
print("line	1")

Variables
Display	several	numbers

x	=	5
y	=	6

print(x)
print(y)
print(8)

shows	the	summation	of	64	+	32.

x	=	64	+	32
print(x)
create	a	program	that	sums	x	+	y

x	=	3
y	=	4
z	=	x	+	y
print(x)

Strings
Print	the	word	lucky	inside	s

s	=	"My	lucky	number	is	%d,	what	is	yours?"	%	7
print(s[3:8])
Print	the	day,	month,	year

s	=	"The	date	is	%d/%d/%d"	%	(7,	7,	2016)
print(s)

_
_
_
_
_



Random	numbers
Make	a	program	that	creates	a	random	number	and	stores	it	into	x.

import	random

x	=	random.randrange(0,10)
print(x)

Make	a	program	that	prints	3	random	numbers.

import	random	as	r

print(r.randrange(0,10))
print(r.randrange(0,10))
print(r.randrange(0,10))

Keyboard	input
Make	a	program	that	asks	a	phone	number.

number	=	input("Enter	number:	")
print("Your	phone	number	is	:	"	+	number)
Make	a	program	that	asks	the	users	preferred	programming	language.

lang	=	input("Python	or	Ruby?:	")
print("You	chose	:	"	+	lang)

If	statements
Exercise	1

x	=	input("Number:	")

if	x	<	0	or	x	>	10:
				print("Invalid	number")
else:
				print("Good	choice")

Exercise	2

password	=	raw_input("Password:	")

if	password	==	"code":
				print("Correct")
else:
				print("Incorrect")

_
_
_
_



For	loop
solution

clist	=	['Canada','USA','Mexico','Australia']
for	c	in	clist:
				print(c)

While	loop

Solution	for	exercise

clist	=	["Canada","USA","Mexico"]
size	=	len(clist)
i	=	0

while	i	<	size:
			print(clist[i])
			i	=	i	+	1

we	combined	a	while	loop	with	a	list.	don’t	forget	to	increase	the	iterator	(i).

Functions
Solution	for	exercise	1

#!/usr/bin/env	python3

def	sum(list):
				sum	=	0
				for	e	in	list:
								sum	=	sum	+	e
				return	sum

mylist	=	[1,2,3,4,5]
print(sum(mylist))

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_



Lists
Display	every	state

states	=	[	
'Alabama','Alaska','Arizona','Arkansas','California','Colorado','Connecticut','
Delaware','Florida','Georgia','Hawaii','Idaho','Illinois','Indiana','Iowa','Kan
sas','Kentucky','Louisiana','Maine','Maryland','Massachusetts','Michigan','Minn
esota','Mississippi','Missouri','Montana','Nebraska','Nevada','New	
Hampshire','New	Jersey','New	Mexico','New	York','North	Carolina','North	
Dakota','Ohio','Oklahoma','Oregon','Pennsylvania','Rhode	Island','South	
Carolina','South	
Dakota','Tennessee','Texas','Utah','Vermont','Virginia','Washington','West	
Virginia','Wisconsin','Wyoming'	]	

for	state	in	states:
				print(state)

Display	all	states	starting	with	letter	m

for	state	in	states:
				if	state[0]	==	'M':
								print(state)

List	operations
Exercises	1	and	2

y	=	[6,4,2]
y.append(12)
y.append(8)
y.append(4)
y[1]	=	3
print(y)

Sorting
sorting	on	first	element

x	=	[	(3,6),(4,7),(5,9),(8,4),(3,1)]
x.sort()

sorting	on	second	element

You	can	sort	on	the	2nd	element	with	the	operator	module.

from	operator	import	itemgetter
x	=	[	(3,6),(4,7),(5,9),(8,4),(3,1)]
x.sort(key=itemgetter(1))
print(x)

_
_
_



Range
Large	list

x	=	list(range(1,1001))
print(x)

Smallest	and	largest	number

x	=	list(range(1,1001))
print(min(x))
print(max(x))

Two	lists

x	=	list(range(1,11,2))
y	=	list(range(2,11,2))
print(x)
print(y)

Dictionary
Map	country	to	short	codes

words["US"]	=	"United	States"
words["UK"]	=	"United	Kingdom"
words["AUS"]	=	"Australia"

Print	each	item

words	=	{}
words["US"]	=	"United	States"
words["UK"]	=	"United	Kingdom"
words["AUS"]	=	"Australia"

for	key,	value	in	words.items():
				print(key	+	"	=	"	+	value)

Read	file
Solution

filename	=	"test.py"

with	open(filename)	as	f:
				lines	=	f.readlines()

i	=		1
for	line	in	lines:
				print(str(i)	+	"	"	+	line),
				i	=	i	+	1

_



Write	file
Solution

f	=	open("test.txt","w")
f.write("Take	it	easy\n")
f.close()

writing	special	characters

f	=	open("test.txt","w")
f.write("open(\"text.txt\")\n")
f.close()

Nested	loops
Solution	nested	loop

for	x	in	range(1,4):
				for	y	in	range(1,4):
								print(str(x)	+	","	+	str(y))

Meeting

persons	=	[	"John",	"Marissa",	"Pete",	"Dayton"	]

for	p1	in	persons:
				for	p2	in	persons:
								print(p1	+	"	meets	"	+	p2)

O(n)^2

Slices
Slices

pizzas	=	["Hawai","Pepperoni","Fromaggi","Napolitana","Diavoli"]

slice	=	pizzas[2]
print(slice)

slice	=	pizzas[3:5]
print(slice)
Slicing	with	text

s	=	"Hello	World"
slices	=	s.split("	")
print(slices[1])

_
_
_
_
_



Multiple	return
Return	a+b

def	sum(a,b):
				return	a+b

print(	sum(2,4)	)

Create	a	function	that	returns	5	variables

def	getUser():
				name	=	"Laura"
				age	=	26
				job	=	"Pilot"
				education	=	"University"
				nationality	=	"Spain"

				return	name,age,job,education,	nationality

data	=	getUser()
print(data)

Scope
Return	global	variable	using	a	function

balance	=	10

def	reduceAmount(x):
				global	balance
				balance	=	balance	-	x

reduceAmount(1)
print(balance)
local	variable	function

def	calculate():
				x	=	3
				y	=	5

				return	x+y

x	=	calculate()
print(x)

_
_
_
_
_



Time	and	date
Return	global	variable	using	a	function

import	time
timenow	=	time.localtime(time.time())
year,month,day,hour,minute	=	timenow[0:5]
print(str(year)	+	"-"	+	str(month)	+	"-"	+	str(day))

Class
Yes,	a	python	file	can	define	more	than	one	class.
Yes,	you	can	create	multiple	objects	from	the	same	class
Objects	cannot	create	classes,	but	you	can	create	objects	from	classes
Object	creation

example	=	Website('archive.org')
example.showTitle()

add	a	method	to	the	class

#!/usr/bin/python
class	Website:
				def	__init__(self,title):
								self.title	=	title
								self.location	=	"the	web"

				def	showTitle(self):
								print(self.title)

				def	showLocation(self):
								print(self.location)

obj	=	Website('pythonbasics.org')
obj.showTitle()
obj.showLocation()

Constructor
Solution	for	exercise

Alice	=	Human()
Chris	=	Human()
second	solution

class	Human:
			def	__init__(self):
							self.legs	=	2
							self.arms	=	2
							self.eyes	=	2



Getter	and	setter
Display	several	numbers

class	Friend:
				def	__init__(self):
								self.job	=	"None"
								self.age	=	0

				def	getJob(self):
								return	self.job

				def	setJob(self,	job):
								self.job	=	job

				def	getAge(self):
								return	self.age

				def	setAge(self,	age):
								self.age	=	age

Alice	=	Friend()
Alice.setJob("Carpenter")
Alice.setAge(33)
print(Alice.job)
print(Alice.age)

A	getter	and	setter	help	you	to	create	clean	code.	By	calling	the	methods	instead	of	changing
variables,	you	can	prevent	accidentally	changing	the	variable	to	a	number	you	do	not	want.
Say	you	have	a	class	Human	with	a	variable	age,	in	the	setter	you	could	prevent	the	variable
from	being	set	to	negative	numbers	of	numbers	higher	than	150	using	an	if	statement.

Modules
Display	several	numbers

import	math

print(math.sin(3))
Inheritance
first	exercise

class	iPhone(App):
				def	getVersion(self):
							print('iPhone	version')

multiple	inheritance



#!/usr/bin/python

class	A:
				def	start(self):
							print('starting')

class	B:
				def	go(self):
							print('go')

class	C(A,B):
				def	getVersion(self):
							print('Multiple	inheritance	class')

app	=	C()
app.start()
app.go()

Enummerate
for	loop	with	enumerable

for	item	in	enumerate(["a",	"b",	"c","d"]):
				print(item)

Static	methods
Yes,	such	a	method	is	a	static	method

Because	static	methods	go	against	the	paradigm	of	object	orientation.	The	general	consensus
is	that	objects	are	created	from	classes.	The	objects	methods	are	defined	in	the	class.	If	you
create	a	static	method,	that	method	is	accessible	without	creating	an	object.

Iterable
an	object	that	can	be	used	as	a	sequence	lists,	strings,	dictionaries	and	sets

Classmethod
a	method	that's	accessible	by	all	objects	and	the	class
a	static	method	doesn't	have	access	to	the	class

Multiple	inheritance
No,	only	some	programming	languages	support	multiple	inheritance.
It	increases	cohesion	between	the	classes.	If	you	have	very	strong	cohesion	throughout	your
code,	your	classes	are	not	reusable	in	other	projects.
No,	there	is	no	limit.


